首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143003篇
  免费   16694篇
  国内免费   9925篇
电工技术   10931篇
技术理论   6篇
综合类   15210篇
化学工业   16836篇
金属工艺   8340篇
机械仪表   10788篇
建筑科学   21046篇
矿业工程   5315篇
能源动力   5116篇
轻工业   7900篇
水利工程   3828篇
石油天然气   6754篇
武器工业   1660篇
无线电   9656篇
一般工业技术   14347篇
冶金工业   5036篇
原子能技术   806篇
自动化技术   26047篇
  2024年   388篇
  2023年   2502篇
  2022年   4604篇
  2021年   5117篇
  2020年   5298篇
  2019年   4447篇
  2018年   4061篇
  2017年   5030篇
  2016年   5458篇
  2015年   6060篇
  2014年   9785篇
  2013年   8766篇
  2012年   10910篇
  2011年   11640篇
  2010年   8613篇
  2009年   9246篇
  2008年   8291篇
  2007年   9616篇
  2006年   8473篇
  2005年   7162篇
  2004年   5853篇
  2003年   5066篇
  2002年   4284篇
  2001年   3517篇
  2000年   2908篇
  1999年   2279篇
  1998年   1884篇
  1997年   1573篇
  1996年   1226篇
  1995年   1101篇
  1994年   991篇
  1993年   678篇
  1992年   608篇
  1991年   485篇
  1990年   408篇
  1989年   295篇
  1988年   214篇
  1987年   102篇
  1986年   84篇
  1985年   86篇
  1984年   69篇
  1983年   72篇
  1982年   83篇
  1981年   28篇
  1980年   75篇
  1979年   26篇
  1978年   17篇
  1975年   14篇
  1959年   14篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
Reducing the Platinum (Pt) loading while maintaining the performance is highly desired for promoting the commercial use of proton exchange membrane fuel cells (PEMFCs). Different methods have been adopted to fabricate catalyst layers (CLs) with low Pt loading, including utilizing lower Pt/C catalysts (MA), mixing high Pt/C catalysts with bare carbon black particles (MB), and reducing CL thickness while maintaining high Pt/C ratio (MC). In this study, self-developed pore-scale model is adopted to investigate the performance of the three Pt reduction methods. It is found that MA shows the best performance while MB shows the worst. Then, effects of Pt dispersion are further explored. The results show that denser Pt sites will result in higher local oxygen flux and thus higher local transport resistance. Therefore, MA method, which shows the better Pt dispersion, leads to improved performance. Third, CLs with quasi-realistic structures are investigated. Higher tortuosity resulting from the random pores produces higher bulk resistance along the thickness direction, while MA still exhibits the best performance. Finally, improved CL structures are investigated by designing perforated CL structures. It is found that adding perforations can significantly reduce the bulk transport resistance and can improve the CL performance. It is demonstrated that CL structure plays important roles on performance, and there are still huge potentials to further improve CL performance by increasing Pt dispersion and optimizing CL structures.  相似文献   
82.
《Ceramics International》2022,48(16):23051-23060
To obtain both plasticity and toughness of the material at the same time, various manufacturing techniques of ceramic-metal composites and structures have been studied. In this work, a bio-inspired Al2O3 ceramic scaffold with Gyroid structure was designed and prepared by stereolithographic (SL) additive manufacturing, then the Al2O3/Al ceramic-metal hybrid structure was prepared by infiltrating molten Al into the Al2O3 ceramic structure. The performances of the Al2O3 ceramic scaffold and the Al2O3/Al ceramic-metal hybrid structure were compared and analyzed by a quasi-static compression experiment. The quasi-static compressive strength of the pristine Al2O3 scaffold was 14.36 MPa, while that of the Al2O3/Al ceramic-metal hybrid structure was up to 89.06 MPa. Moreover, the plasticity of the Al2O3/Al ceramic-metal hybrid structure was much higher than that of the Al2O3 scaffold. During compression, the Al2O3/Al ceramic-metal hybrid structure had excellent energy absorption, reaching up to 2569.16 KJ/m³, 15 times that of the Al2O3 scaffold. Therefore, this method can obtain materials with excellent ductility and toughness.  相似文献   
83.
Graphite–SiC micro-composites have been prepared in–house by carbothermal reduction process. Controlling the process parameters including the weight ratio of SiO2 to graphite as well as carbothermal reduction temperature during the micro-composite preparation favors the homogeneous formation of SiC with preferred morphologies like ribbons and whiskers/fibers. The micro-composite modified low carbon MgO-C refractories have exhibited significantly improved bulk properties over the standard composition. To understand the beneficial role of SiC reinforcement on hot strength performance under air oxidizing conditions, we propose a scaling parameter known as strength factor (fs) based on the ratio of hot strength (HMOR) to cold strength (CCS). Correlating the strength factor data (fs) with oxidative damage provides new insights into the reinforcing effects of distinct SiC morphologies in this new class of micro-composite fortified refractory systems over the standard compositions.  相似文献   
84.
《Ceramics International》2022,48(12):17104-17115
This study reports on the early hydration properties and microstructure evolutions of MgO-activated slag at five curing temperatures (20 °C, 40 °C, 50 °C, 60 °C, and 80 °C) and three MgO types (S-MgO, M ? MgO, and R-MgO). The results indicated that high-temperature curing substantially increased the compressive strength of the specimens. Particularly, the highest strength was obtained at 40 °C and 60 °C for the S-MgO and M-MgO-activated slag specimens, respectively, and the high curing temperature for the R-MgO-activated slag specimen was 40 °C. We focused on the relationship between the mechanical properties, pore structure characteristics, and hydration products. The combination of calcium-silicate-hydrate (C-S-H) gel and Al increased under high-temperature curing conditions. XRD, FT-IR, TG-DTG, and 27Al MAS-NMR results showed a high Al content in the formation of calcium silicate hydrate with Al in its structure (C-A-S-H gel) for the R-MgO-activated slag pastes under high-temperature curing; however, the microstructure was loose owing to the formation of excessive brucite. For the S-MgO-activated slag specimen, the Ca/Si ratio was high, with more Mg2+ penetrating the C-S-H gel interlayer, forming more hydrotalcite-like phases and increasing the chain length of the C-S-H gel. The microstructure showed good compatibility of the hydration products interweaving to form dense microstructures.  相似文献   
85.
《Ceramics International》2022,48(1):446-454
Readily oxidization of magnetic particles is a common drawback of these type of materials which reduce their electromagnetic wave dissipation performance. In this study, the magnetic core-double shells structured (Ni/SiO2/Polyaniline) composite has been developed for protection of the core from oxidation and in consequent improvement the complex permittivity. Solvothermal and in-situ polymerization methods were utilized for decorating Ni micro-particles with SiO2 and conductive polyaniline polymer respectively. All physico-chemical, magnetic and electromagnetic features were evaluated via XRD, FTIR, XPS, FESEM, VSM and VNA analysis. The double shells composite possesses significant performance in terms of reflection loss and effective absorption bandwidth. The results reveal that the maximum dissipation capacity of the double shells composite is – 32.5 dB at 16.5 GHz with 4.5 GHz effective absorption bandwidth and 1.5 mm thickness. Enhancement in microwave dissipation features are arises from synergistic influence of various phenomena such as interfacial polarization, multiple Debye relaxation, natural ferromagnetic resonance and proper impedance matching characteristic. Overall, developing double shells structure on magnetic Ni microsphere particles had a meaningful effect on tuning the microwave absorption performance.  相似文献   
86.
《Ceramics International》2022,48(2):2337-2344
An Al–Si–Al2O3 composite was prepared with corundum, aluminium powder and silicon powder. A creep test was carried out at 1300°C under 0.2 MPa for 50 h in air. The results show that the Al–Si–Al2O3 composite performs a low constant creep rate and remain until the end of the 50-h test. This is attributed to the in-situ formation of the tough non-oxide reinforcements, whisker-like (AlN)x(Al2OC)1-x solid solution and granular β-SiC, by reactions of Al and Si during creep test. The whisker-like (AlN)x(Al2OC)1-x solid solution and granular β-SiC reinforcements are evenly filled in the pores, which play the role of bridging and pinning reinforcement, forming a strong network structure with corundum aggregates. Moreover, these non-oxide phases are not wetted by the liquid phases, which impel the liquid phase shrinks in the network structure in isolation during creep test. Thus, the adverse effect of the liquid phase on the high-temperature strength of the composites is eliminated, so the composites with strong network structure quickly get a stationary low-creep state. A creep mechanism model is established.  相似文献   
87.
The structure of mold flux glasses in the system CaO-(Na,Li)2O-SiO2-CaF2 with unusually high modifier contents, stabilized by the addition of ∼4 mol% B2O3, is studied using 7Li, 23Na, 19F, 11B, and 29Si magic-angle-spinning (MAS), and 7Li{19F} and 23Na{19F} rotational echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. When taken together, the spectroscopic results indicate that the structure of these glasses consists primarily of dimeric [Si2O7]−6 units that are linked to the (Ca,Na,Li)-O coordination polyhedra, and are interspersed with chains of corner-shared BO3 units. The F atoms in the structure are exclusively bonded to Ca atoms, forming Ca(O,F)n coordination polyhedra. This structural scenario is shown to be consistent with the crystallization of cuspidine (3CaO·2SiO2·CaF2) from the parent melts on slow supercooling. The progressive addition of Li to a Na-containing base composition results in a corresponding increase in the undercooling required for the nucleation of cuspidine in the melt, which is attributed to the frustrated local structure caused by the mixing of alkali ions.  相似文献   
88.
In lead optimization, protein crystallography is an indispensable tool to analyze drug binding. Binding modes and non-covalent interaction inventories are essential to design follow-up synthesis candidates. Two protocols are commonly applied to produce protein–ligand complexes: cocrystallization and soaking. Because of its time and cost effectiveness, soaking is the more popular method. Taking eight ligand hinge binders of protein kinase A, we demonstrate that cocrystallization is superior. Particularly for flexible proteins, such as kinases, and larger ligands cocrystallization captures more reliable the correct binding pose and induced protein adaptations. The geometrical discrepancies between soaking and cocrystallization appear smaller for fragment-sized ligands. For larger flexible ligands that trigger conformational changes of the protein, soaking can be misleading and underestimates the number of possible polar interactions due to inadequate, highly impaired positions of protein amino-acid side and main chain atoms. Thus, if applicable cocrystallization should be the gold standard to study protein–ligand complexes.  相似文献   
89.
彭帆  曾毅 《无机材料学报》2021,36(11):1193-1198
电子背散射衍射(Electron Backscatter Diffraction, EBSD)是研究材料显微结构的重要手段之一, 通过EBSD获取的菊池衍射花样是材料内部微观晶体结构的直观反映。本研究通过识别菊池花样中的对称轴, 结合晶体对称定律, 提出了一种利用菊池花样进行晶体对称性分析和晶体结构鉴定的方法。通过该方法成功对三个未知样品的对称性和晶体结构进行了判断。其中一个样品确定到所属晶系, 另两个样品锁定到部分点群, 通过确定晶系和点群排除了部分不符合对称性的相鉴定结果。研究结果表明, 利用菊池花样进行对称性分析是判断晶体结构的有效方法。同现有方法相比, 菊池衍射花样法大大缩小了相鉴定的检索范围, 显著提高了相鉴定的准确性和可靠性, 是一种有望用于新一代EBSD设备的标定技术。  相似文献   
90.
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the “canonical” one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号